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SUMMARY

To permit simplified analysis of complex time-dependent flows, possible relationship between the near-wall flow,
flow separation and vortices are studied numerically for a flow in a constricted two-dimensional channel. The
pulsating incoming wave-form consists of a steady flow, followed by a half-sinus flow superimposed on the steady
component. One pair of vortices is created in each cycle, one vortex near each wall. The vortices propagate
downstream in the next cycles, promoting flow separation as they move. Existing flow separation criteria were not
found to be uniformly valid. A relation between the near-wall flow and the vortical system exists only during the
steady incoming flow phase of the cycle. It seems that local criteria of flow separation cannot be found for complex
internal pulsating flow fields. However, the vorticity field can be utilized, even in complex time-periodic flows, for
identifying vortices that have been formed by the roll-up of shear layers.
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1. INTRODUCTION

The identification of flow separation and vortices in two-dimensional internal flows with a time-
periodic flow at the entrance is studied. The identification of flow separation is important because it
affects global properties as well as integral quantities such as pressure drop and heat and mass transfer
rates. In steady two-dimensional flows the pattern of the streamlines uniquely defines the structure of
the flow field, including the flow-spearated regions. The separation points coincide with the points
where the skin friction (wall vorticity) vanishes. In unsteady flows it is impossible to relate uniquely
flow-separated regions with the instantaneous streamlines.' For example, numerous experimental and
numegigal evidences show that the vanishing of the wall vorticity does not coincide with the separation
point.

It is widely accepted that the separation point (in both steady and unsteady flows) is the point where
the flow ceases to follow the contour of the body and breaks away from the wall.>* This intuitive
definition is based on many flow visualizations but is difficult to quantify or to relate to the
instantaneous state of the flow. Experimental works may use dye flow visualization techniques to
determine flow separation in unsteady flows.’ In numerical simulations the streaklines yield similar
information. However, the calculation of the streaklines of unsteady flows require large computational
resources. To simplify the recognition process, simpler methods were sought, yielding several criteria
for identifying flow separation; see details in Section 4.1. The criteria were developed for external
boundary-layer-like flows. In the present work, however, internal flows are considered. In many
internal flows a thin boundary layer does not exist. On the contrary, large flow-separated regions,
which may develop into vortices, are formed in many cases.>'° Moreover, most existing unsteady
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separation criteria have been proposed for flows which are not periodic in time. This raises questions
about the validity of existing separation criteria for internal periodic flows. The applicability of these
critera to a class of internal time-periodic flows will be investigated in Section 4.2.

The relationship between the near-wall flow and the vortical (separated) flow away from the wall was
studied extensively for steady and external three-dimensional flows.!' The existence of a correlation
between the near-wall flow and the outer flow may offer many advantages in the study of complex
time-dependent vortical flows because of the simplicity and data reduction gained by the elimination of
one physical dimension (the transverse dimenston). An attempt is made in Section S to correlate the
near-wall flow with the global flow field for internal time-periodic flows.

One of the distinctive properties of pulsating internal flows is their strong dependence on governing
factors such as the geometry or the Strouhal and Reynolds numbers.!® Therefore the problem of
periodic separation cannot be studied in general terms. In the present study we test existing separation
criteria and the possible correlation between the near-wall flow and the ‘outer’ flow for the example of
a pulsating flow imposed at the entrance of an asymmetric constricted two-dimensional channel. The
pulsating flow in non-uniform channels was found in many works to result in flow separation®’ and the
development of multiple vortices,®® which in some cases propagated downstream.'®!2 Our interest is
focused less on the identification of separation points and more on the identification of flow separation
and formation of vortical flows.

2. METHODOLOGY
2.1. Formulation

The geometrical set-up is shown in Figure 1(a); it is similar to that used in the experiments of Park.'
The channel is composed of two straight parallel plates at a distance 4 from each other (length units are
scaled by /). On the upper wall a circular arc constriction is added with a constriction size a/h = 0-56.

The equations governing the flow of a constant density isothermal incompressible fluid in a fixed
control volume with face S and volume ¥ are the conservation-of-mass equation
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Figure 1. (a) Geometry of computational domain (not to scale) and (b) mesh in region downstream of constriction (only every
fourth mesh point is shown)
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where u is the velocity vector, ¢ is the time, dV is a volume element and dS is the area element vector.
For Newtonian fluids the tensor T is given by

T = —uu — PI +v[Vu + (Vu)’], (2b)

where 1 is the identify tensor, Vu is the gradient of u and (Vu)” is its transpose. The pressure is P and v
is the kinematic viscosity.

The wave-form of the average axial velocity (U(f) at the entrance is defined for each cycle as in the
experiments of Park:'?
U, 0<t/T<}

U@ = s

: ) 3
Us = U, sin@mt/T), 5<t/T<1,

where T is the period and U; and U, are the steady and oscillating components respectively. In the
present study Us=1 and U,=1-217, yielding a mean velocity Up,=1-387. The start of each cycle
corresponds to #/T=0, i.e. #/T is the phase of the cycle (not the absolute time). We shall refer to a phase
inside a cycle also according to the variation in the incoming flow. Thus the steady incoming flow
phase refers to the first half of the cycle, > #/T >0, while the acceleration and deceleration phases
refer to 2> #/T>1and 1 > ¢/T > 3 respectively.

At the upstream boundary a fully developed flow is specified for the wave-form (3). At the
downstream boundary, Neumann boundary conditions are given for the velocity components: du/
ax = 0, where x is the streamwise Cartesian co-ordinate. On the upper and lower walls, no-slip and no-
injection conditions are specified: u=0.

The Reynolds and Strouhal numbers, defined by Re= Uyh/v and St=h/U,T respectively, are
Re =182 and St=0-368. These values (as well as U, and U,) duplicate the ‘base case’ defined in the
experiments of Park.'?

2.2. Numerical method

The laminar unsteady incompressible Navier—Stokes equations with primitive variables are solved
via a solution procedure developed by Rosenfeld et al.'* and Rosenfeld and Kwak.'*!® The formation
of the governing equations, the discretization procedure and the numerical solution stages are
combined to yield an accurate and efficient solution method for complex time-dependent flows in
generalized co-ordinate systems. The governing equations, written in the integral form (1) and (2), are
discretized by finite volumes. The scheme is second-order-accurate in space and time. The discrete
equations are solved by a fractional step method with an approximate factorization of the momentum
equations, The convergence rate of the Poisson equation is accelerated by a multigrid procedure. The
interested reader may find the details of the method in the reference cited above.

2.3. Mesh and numerical details

A transfinite algebraic mesh generator was employed with 289 x 97 points in the axial and
transverse directions respectively. The finest resolution in the axial direction is specified downstream
of the constriction, where the flow field is most complex. A blow-up of the mesh in this region is
shown in Figure 1(b); for clarity, only every fourth mesh point is shown in each direction.

The solution was started from a fully developed parabolic velocity profile and was marched in time
until a (graphically accurate) time-periodic flow was attained in the entire region of interest. The results
to be presented are for the 11th cycle from the start of the solution. By this time a steady time-periodic
flow is established, so that all the results refer to the periodic solution. The numerical method itself was
validated for a series of internal and external flow problems.'*!
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The geometry, the incoming wave-form and the Reynolds and Strouhal numbers were chosen to be
identical with the ‘base case’ considered in the experiments of Park.'? The reason is that detailed
comparisons with these experimental results were carried out by Rosenfeld.'® The vortical flow field
was accurately captured by the numerical simulations and very good agreement was obtained in the
propagation speed of the vortices for a wide range of parameters. In addition, the numerical model and
the calculated results were also extensively tested for numerical consistency and accuracy. It was
shown that the mesh size and the number of time steps were adequate and that the location and type of
boundary conditions were correctly chosen. The validated results permit the further investigation of the
flow in detail not possible using the experiments only.

3. THE FLOW FIELD

The instantaneous streamlines are shown in Figure 2(a) for 10 equally spaced instances along one
cycle. In the first half of the cycle a vortex is observed on the upper wall lee of the constriction,
followed by a series of decaying vortices downstream. On the lower wall another series of vortices is
observed. The whole system propagates downstream, resulting in a wavy core flow with decaying
transverse oscillations. In the acceleration phase of the cycle (% >tHT> %) the vortices seem to diminish,
the core streamlines straighten out and the flow in the diverting part of the constriction attaches to the
walls. In the deceleration phase (1 > #/T > %) the vortex lee of the constriction reappears, along with the
other vortices of the flow that seemed to disappear during the acceleration phase. In the steady phase of
the incoming flow the upstream vortices expand and get stronger.

The pattern of the streamlines is useful in analysing steady flows, yet it might be misleading for
usteady flows.** The large increase in the incoming flow velocity wrongly implied the disappearance
of the vortices in the instantaneous streamline plots, as Figure 2(b) clearly exhibits. In this figure the
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Figure 2. (a) Instantaneous streamlines and (b} vorticity field at 10 equally spaced instances of a cycle. The increment between
the vorticity contour lines is 2.5. Zero values are shown by broken lines
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vorticity field is given for the same 10 phases of the cycle. The transverse oscillations in the vorticity
field remain fairly uniform over the entire cycle, in contrast with what was observed in the pattern of
the streamlines. The difference is especially prominent in the acceleration phase of the flow, when the
instantaneous streamlines are almost parallel to the walls, while the vorticity field exhibits large
transverse variations. The streamlines also indicated the diminishing of the vortices in the acceleration
phase and their reappearance in the deceleration phase. The vorticity field, however, reveals that the
size and strength of the vortices hardly change.

A new pair of vortices is developed in each cycle, one vortex near each wall. In any instance,
vortices generated at previous cycles still co-exist downstream, creating two trains of moving vortices
near the walls and a wavy core flow between them. Following the notation of Park,'? the upper and
lower wall vortices are labelled by A and B respectively (Figure 2(a)). The co-existing vortices are
differentiated by an index that refers to the formation cycle relative to the present cycle n. Thus B,_;
refers to the lower wall vortex that was generated in the previous cycle, etc.

The first pair of vortices is formed in the region 12.5>x> 11 (the formation region). In the
deceleration phase, vorticity is carried away from the walls through shear layers. Being far from the
retarding forces of the walls, the shear layers roll up by #7=0-2 and form the two vortices A, and B,;;
see Figure 2(b) (and Figure 3 below). The vorticity included in each vortex originates from the
boundary layer far upstream from the location of the vortex itself. In the propagation region (x > 12-5)
the flow field is dominated by the propagating vortices. The vortices are advected downstream with a
small propagation speed during the first half of the cycle. In the second half the propagation speed
increases along with the growth of the incoming velocity. The flow in the propagation region resembles
the flow due to the interaction between a boundary layer flow and a convected vortex filament in the
outer region.'” The moving vortices force the flow in the propagation region to separate from the walls.
In the formation region, on the other hand, the flow separation is excited by the decelerating flow and
the non-uniform geometry. Beneath the propagating vortices a counter-vorticity region is created by
the swirling motion of the vortices. The wall is characterized by alternate regions of negative and
positive vorticity that last over a large portion of the cycle; see also Section 5.

The streaklines at the same 10 phases of a cycle are shown in Figure 3. Vortices can be identified
from the time sequence of the streaklines based on the definition of a vortex as a mass of fluid moving
around a common (stationary or moving) axis. The properties of the flow exhibited by the streaklines
are similar to those described previously. The formation of the first pair of vortices is characterized by
the rapid penetration of particles into the core flow and the roll-up of the vortices by #T > 0-2. After the
formation of A, and B, they expand up to the beginning of the acceleration phase. During the
acceleration their sizes remain approximately constant, while in the deceleration phase they deform
into elongated vortices. In the next cycle A,,_; and B,_, continue to deform and the vortical motion is
clear only in the core of the vortices.

The similarity of the streaklines to the vorticity field in two-dimensional flows is of special interest.
Many experimental works noticed the close agreement between the two.>'® The shape of the vortices
and the location of their centres, as found from the vorticity field (Figure 2(b)) and the streaklines
(Figure 3), are indeed identical in the steady incoming velocity phase of the pulsating case. A small
deviation is found in the acceleration phase, but the discrepancy diminishes in the deceleration phase.
This is in contrast with the instantaneous streamlines, which completely missed the details of the flow
field in the second half of the cycle.

Obviously the streaklines are the most reliable technique for identifying flow separation in unsteady
flows, especially if the flow is driven by large periodic components. However, the computational
resources needed to calculate the streaklines might be beyond routine capabilities, especially for
complex flows. In many cases the vorticity field may offer a cheap alternative for identifying vortices
and associated flow-separated regions. Nevertheless, the vorticity field cannot be always related
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Figure 3. Streaklines at 10 equally spaced instances of a cycle

uniquely to flow separation, even in steady flows.! It can, however, reliably identify vortices that result
from the roll-up of shear layers, by locating closed vorticity contour lines.

4. UNSTEADY FLOW SEPARATION

In the present section, unsteady flow separation criteria are evaluated for the class of internal flow
problems that are of interest in the present study. Existing criteria are reviewed in Section 4.1, while in
Section 4.2 the applicability of these criteria is studied. New recommendations are given in Section
4.3. The findings in the upper and lower walls are similar and therefore only the results of the lower
wall are depicted.

4.1. Existing flow separation criteria

4.1.1. Unsteady flow separation criteria. The well-known MRS criterion (after Moore, Rott and
Sears} defines the separation point in an unsteady flow as the point where both the shear stress and the
velocity magnitude vanish in a co-ordinate system moving with the separation point. Another criterion
was suggested by Wang,'® who noticed the mathematical similarity between the unsteady two-
dimensional boundary layer equations and the steady three-dimensional boundary layer equations. On
the basis of his studies on the topology of the skin friction lines near three-dimensional steady flow
separation,”® Wang proposed for the case of unsteady two-dimensional flows to study the topology of
the curves defined by

dx du

- — = — 4
rrin Owall, C)
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where n is the normal direction, wy, is the wall vorticity and u is the axial velocity component. The
lines are called ‘skin friction lines’, in analogy with the three-dimensional case. Wang19 identified
unsteady separation with the envelope of the skin friction lines. He found that the flow separates if
many skin friction lines converge into a single line, the convergence line, that describes the motion of
the separation point in the x— plane. Supporting evidences were found in several studies of flows with
boundary layer character; see e.g. References 19 and 21.

These criteria of flow separation in unsteady cases might not be universal, because they are mainly
based on experimental observations without rigorous theoretical basis. Didden and Ho?? and Ho*
concentrated on flow separation sympfoms to overcome the lack of a universal criterion. They
identified experimentally several symptoms for the case of a vortex-induced unsteady separation. The
symptoms were thickening of the boundary layer, ejection of vorticity, zero shear stress, occurrence of
a saddle point, initiation of a local shear layer and large transverse velocity. These symptoms indeed
occur in many separated flows,”® but they do not appear in a predefined order and so cannot be
regarded as separation criteria.

4.1.2. Time-periodic flow separation criteria. Flow separation in time-periodic flows is even less
well studied. In the case of oscillating boundary layer flows Despard and Miller’* related the
commencement of laminar boundary layer separation with the initial occurrence of zero velocity or
reverse flow throughout the cycle. Supporting evidences were found by Koromilas and Telionis.?’
They mapped experimentally the velocity field over a backward-facing circular arc placed in a steady
upstream flow with a 5% periodic disturbance superimposed on it. The oscillations in the velocity field
were found to be magnified drastically as the separation point was approached. Similar findings were
made by Mezaris ef al.?® for a pulsating boundary layer flow. They suggested using this observation as
a separation criterion for time-periodic cases.

4.2. Evaluation of flow separation criteria

The validity of these flow separation criteria for the present problem will be evaluated in this
subsection. We shall adopt the widely accepted definition of the separation point as the point where the
streaklines break away from the wall.>> This ‘exact’ separation point will be compared with the
various separation criteria. The determination of the separation points using the streaklines might be
inaccurate, because the breakaway point is determined visually. However, in many cases the breakaway
is quite sudden, so that the inaccuracy introduced in this graphical definition is tolerable. Anyway, in
the present study the exact location of the separation point is less important than the identification of
the occurrence of flow separation.

To determine the separation points of the B-vortices, the streaklines were calculated for 20 axial
locations near the lower wall. An example of the resulting streaklines is shown in Figure 4 for
t/T=0-5. The breakaway that marks the formation of B, (point L) is gradual, but it has a steeper slope
away from the wall. The identification of the separation points of B,_; and B,,_ (points M and N) is
easier.

10 12 14 16 18 20
Figure 4. Streaklines released from vicinity of lower wall (#/7=05)



330 M. ROSENFELD

4.2.1. Unsteady flow separation criteria. Figure S plots in the x—¢ plane the separation point lines
(SPLs), the zero-vorticity lines (ZVLs) and the ‘skin friction lines’ (SFLs) on the lower wall. The SPL
describes the motion of the separation point (as found from the streaklines). The ZVL is the line that
joins the points of vanishing vorticity. In each case the four separate lines correspond to the four
vortices that co-exist on the lower wall. The four SPLs can be determined for the entire cycle, while the
ZVL disappears during the acceleration and part of the deceleration phases (except for B,). The
downstream propagation of the vortices is exhibited by the oblique lines in the x—f plane. In agreement
with previous studies of unsteady flows, the SPL and the ZVL do not coincide.>™® The distance
between them is almost constant (1 & 0-1), indicating a similar propagation velocity. However, unlike
in other studies, the separation points are always upstream of the zero-vorticity points.

The skin friction lines are calculated from equation (1). The integration is carried out for 40 equally
spaced points along the x-direction. In addition, the SFL calculation is restarted at eight phases of the
cycle. The resulting pattern of skin friction lines is indeed similar to that obtained for three-
dimensional steady flows.'"?® Four convergence lines are found in the first half of the cycle,
corresponding to the four co-existing B-vortices. The skin friction lines merge from both sides,
classifying the convergence lines as ‘open separation’ lines.'®° The convergence line of B,, (the most
upstream convergence line) forms only after #/7 > 0-2. This correlates with the completion of the roll-
up of B, supporting the conjecture of Wang that convergence lines coincide with separation lines. The
convergence lines of the downstream vortices B,_; and B,_, form after #T > 0-9, in agreement with
the reappearance of recirculating flow in the instantaneous streamlines (Figure 2(a)). In the acceleration
phase, convergence lines do not form. The absence of convergence lines and ZVLs is a result of the
increase in the magnitude of the wall vorticity in the acceleration phase of the incoming flow,
eliminating zero values of the vorticity. However, the changes in the vorticity field away from the body
are small and the vortices themselves are only slightly affected; see Section 3.

t/T

Figure 5. ‘Skin friction’ lines ( ), separation point lines (—#M—), zero-vorticity lines (—@—) and vortex centre lines

(—0—) in x— plane (lower wall)
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In the boundary layer calculations of Wang'9’2° the vorticity always vanishes upstream of the
separation line. In the present internal flow case the convergence lines coincide with the ZVLs and are
downstream of the SPLs. The centres of the vortices, also shown in Figure 5, are always downstream of
the convergence lines but at a relatively short distance from them.

The implementation of the MRS condition requires the knowledge of the separation point velocity to
locate the stagnation points in a co-ordinate system moving with the separation point. Usually this
velocity is unknown and therefore the implementation of the MRS condition is difficult. In the present
case the velocity of the separation point can be calculated from the motion of the separation point.
However, we have found no points in the flow field that satisfy the MRS condition. The inapplicability
of the MRS condition for even external unsteady flow separation characterized by ‘open separation’
lines was also reported by Wang.?! Doligalski and Walker'” found as well that the MRS condition is
not likely to be satisfied in the case of a boundary layer separating in response to the motion of a vortex
(as in the case in the propagation region of the present case). Consequently, the inapplicability of the
MRS criterion supports previous findings for similar flows.

Most of the separation symptoms listed by Didden and Ho?> and Ho*? can indeed by found in the
present results. Zero shear stress is found near the separation points. A thick boundary layer and a
larger transverse velocity precede the separation of the flow. However, the vorticity that feeds the first
pair of vortices cannot be described as ejected from the walls as Didden and Ho?” found, because the
separation is a gradual process. Also, local shear layers are initiated by the moving vortices, as was
mentioned in the list of separation symptoms. However, these shear layers include counter-velocity,
which contributes to the destruction of the moving vortices.

4.2.2. Time-periodic flow separation criteria. The criterion of Despard and Miller** was also found
to be inapplicable. The moving vortices and the large oscillating component of the incoming flow
induce both upstream and downstream velocities at each point near the walls (depending on the phase
of the cycle), excluding the existence of regions with reverse velocity over the entire cycle. Even in the
inception region of vortex A, lee of the constriction, reverse flow during the entire cycle was not found.

To compare with the criterion of Mezaris et al.?® for periodic flows, Figure 6 presents the amplitude
of the first Fourier harmonic in a time decomposition of the axial velocity («). The amplitude of the
first harmonic of u, which is the most dominant oscillating component, exhibits an organized pattern in
the propagation region. Several sets of oval-shaped contour lines appear near each wall, with the peaks
in the centre of the closed lines.

In the formation region of the first pair of vortices the large increase in the fluctuating component is
similar to that found by Mezaris et al.?® In the propagation region an increase in the fluctuating
components can be found in alternate regions along the wall. However, in Reference 26 the separation
point oscillated with a small amplitude around a mean position. In the present case the vortices
propagate monotonically downstream. It is not possible to relate the centre of the closed contour lines
in the propagation region to the commencement of flow separation, because every point near the walls
(downstream of the constriction) is evenually swept by the propagating vortices. Nevertheless, the
similarity in the fluctuating components of these two very different flow problems is remarkable.

Figure 6. First Fourier harmonic of the axial velocity. The increment between contour lines is 0-2
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4.3. General remarks and recommendations

In the steady incoming flow phase the convergence lines of the SFLs were able to identify the
presence of flow separation, although the separation points do not coincide with the convergence lines.
In the second half of the cycle, however, none of the separation criteria holds, even approximately. The
reasons for the disagreement are obvious. Existing studies were performed for external flows that have
a distinct boundary layer character. This is not true for the present internal flow case. The size of the
separated region is of O(1) and a thin boundary layer flow does not precede the separation. The
separation points in previous studies were nearly stationary, while in the present problem they move
downstream monotonically. Moreover, the separated regions form closed vortices, whereas in most
other studies the separation point precedes the formation of a wake flow. It is doubtful whether a simple
criterion can be found at all for complex internal flows. The inevitable conclusion is that existing
unsteady separation criteria cannot be simply extended to internal flows with large forced oscillating
components.

To retain some hope, we have to recall the close resemblance found between the streaklines and the
vorticity field, including in the region of the vortices (Section 3). Therefore the vorticity field is
suggested as an alternative approach for identifying vortices in complex flows. Although this requires
more processing effort than local criteria (which probably do not exist in complex flows), it is still easy
to perform. However, even this complete field analysis does not apply to all cases, but only to vortical
regions that have been generated by the roll-up of shear layers, i.e. closed vorticity contour lines are
found.

5. NEAR-WALL FLOW

Section 4 discussed the absence of a uniformly valid correlation for internal pulsating flows between
flow separation and the separation points, the zero-vorticity points or even the ‘skin friction lines’. In
the present section we investigate further the near-wall flow and its relationship with the fiow away
from the wall. If a unique relationship can be established, the investigation of similar flow fields might
be significantly simplified, as is done for external three-dimensional steady flows.'!

The close resemblance between the vorticity field and the streaklines might indicate that a
relationship does exist between the wall vorticity and the propagating vortices in the ‘outer’ flow.
Figure 7 plots the vorticity on the lower wall in the x-¢ plane. The full and dotted contour lines indicate
positive and negative vorticity values respectively, while the broken contours are the zero, vorticity
lines. The large variations in the incoming flow wave-form are exhibited in the pattern of the wall
vorticity. Short-scale oscillations observed near the discontinuous parts of the time derivative of the
incoming flow (#T=0 and 0-5) are due to the sudden change in the mass rate flow. In the steady
upstream phase of the cycle the vorticity varies mainly along the streamwise direction. The variations
with time are smaller and are mainly a result of the moving vortices. At the beginning of the
acceleration phase the magnitude of the wall vorticity increases abruptly, leading to vertical contour
lines near #/T=0-5.

In the second half of the cycle the vorticity variations with time are of the same order of magnitude
as the variations along the x-direction, creating closed contour lines. In the acceleration phase the
(negative) magnitude of the vorticity increases, while in the deceleration phase the magnitude
decreases according to the variation in the incoming flow. However, the maximal wall vorticity is not
found at #/T'=0-75 when the inflow mass rate is maximal, but earlier at #/7~ 0-64—0-67 (depending on
the axial location), which is equivalent to a phase lead of about 35°.

The sign of the wall vorticity indicates the direction of the near-wall flow, while the points of
vanishing vorticity coincide with stagnation points. Figure 7 shows that alternate regions of upstream
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t/T

Figure 7. Vorticity on lower wall in x—¢ plane. The increment between contour lines is 5. Positive, negative and zero vorticities are
shown by full, dotted and broken contour lines respectively. Separation point lines (—B—) and vortex centre lines (——) are
also plotted

and downstream flow are found near the lower wall in the first half of the cycle. The regions of reverse
flow are beneath the vortices, while downstream flow prevails between the moving vortices. In the
acceleration phase the flow along the entire wall is downstream, except in a very small domain beneath
B, (x~ 13.5). However, this does not mean that the vortices are annihilated. The vorticity field, Figure
2(b), shows that the excess vorticity stays bound to the walls, generating a thin layer of high vorticity.
This layer does not feed the vortices, maintaining the same system of vortices as in the steady
incoming flow phase. Reverse flow regions are formed near the wall during the deceleration phase
(note, however, that in unsteady flows a reverse flow does not necessarily indicate the presence of flow
separation). In the steady incoming flow phase the regions of reverse flow near the wall diminish to the
regions beneath the moving vortices.

An issue we raised is whether there is a relationship between the near-wall flow and the vortices
away from the wall. To investigate this topic, the separation point lines and the centres of the B-vortices
are also shown in Figure 7. In the steady incoming flow phase a relationship can indeed be found. The
separation points lie in the regions of minimal vorticity (maximal negative value), while the centres of
the vortices are located above the points where the wall vorticity is maximal. In the second half of the
cycle a clear relation between the near-wall flow and the outer flow does not exist. Although the same
trends are observed, the increase in the incoming flow changes the wall vorticity rapidly, whereas the
vortices respond more slowly. Consequently, the separation and vortex centre points are located
downstream of the respective minimum and maximum of the wall vorticity. The largest deviation
occurs when the magnitude of the vorticity is maximal (#/7~ 0-65).

6. CONCLLUDING REMARKS

The identification of flow separation and separation points as well as the relation between the near-wall
flow and the outer vortical flow were investigated in the present paper for an internal pulsating flow. In
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the steady incoming flow phase the criterion of Wang'® predicted reasonably well the separation of the
flow. However, most other separation criteria failed. Similarly, in the steady phase of the cycle a unique
relationship could be found between the near-wall flow and the ‘outer’ vortical flow. However, in the
second half of the cycle, which included variations of order O(1) in the incoming flow, none of the
separation criteria was found to be applicable and no relation could be found between the near-wall
flow and the outer flow.

The streaklines can visualize accurately flow separation and vortices in unsteady flows. Besides the
streaklines, the vorticity field is probably the most reliable visualization technique for complex
unsteady flows. The vorticity field closely follows the pattern of the streaklines in the vortical regions
during the entire cycle. Therefore we recommend it for identifying vortices that form through the roll-
up of shear layers.

Other pulsating and internal flow cases may behave differently and the present study does not claim
to be valid for all possible cases. The study should be repeated for other classes of pulsatile vortical
flows to extend the generality of the results. However, we believe that similar results hold for cases that
are dominated by large moving vortices. This belief is supported by a series of (unreported) flow
simulations that we have conducted for a wide range of governing parameters.
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